Nokeval

Contents

Document information	2
Introduction	3
Trademarks	
Manufacturer	
Installing	4
Maintenance	8
Firmware settings	9
Operation1	13
SCL protocol1	14
Modbus protocol 1	15
Nopsa commands 1	18
Specifications	22

Document information

Device Scope:	FT20	
Device Versions:	1.1 to 1.2	
Document Type:	manual	
Document ID:	2873	
Document Version:	15	
Document Date:	2.10.2012	

Introduction

FT20 is a radio data receiver and repeater for Nokeval MTR, FTR and KMR series wireless transmitters.

Type FT20-RTC433-RECEIVER means the device is pre-set as receiver only. Type FT20-RTC433-REPEATER means the device is pre-set as repeater and is supplied with a power supply.

FT20 receives and buffers the data packets that wireless transmitters have sent. It can also relay the data packets so that large areas can be covered using only one receiver. It automatically recognizes the types of the transmitters, so different kinds of transmitters can be used simultaneously. Transmitters can also have different transmission intervals. FT20 uses license-free 433.92 MHz frequency band (ISM) so it can be freely used, for example, almost in whole Europe.

FT20 is housed in a watertight (IP 66) and impact resistant plastic enclosure. The joint between the two modules is sealed with two rubber O-rings. The receiver is connected to a computer using RS-485 bus and it requires e.g. PromoLog data acquisition application that reads the data from the device.

Nokeval SCL or Modbus RTU protocol is used for data transmission between the receiver and the computer. Multiple receivers can be connected in parallel to an RS-485 bus to increase the coverage area. FT20 has one diagnostic LED and it requires 8..30 VDC power supply.

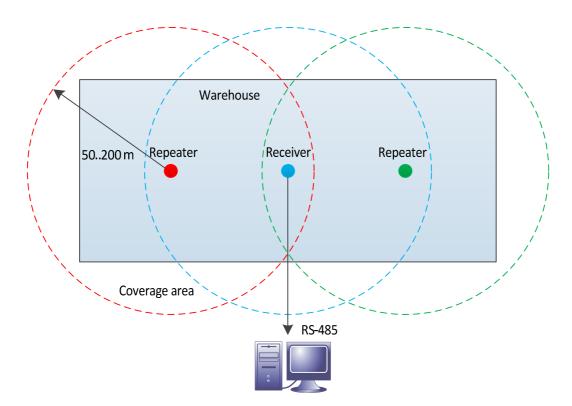
Trademarks

This device uses the <u>FreeRTOS</u> real-time operating system version 6.0.5. The source code of the RTOS is available on request – contact <u>support@nokeval.com</u>.

Manufacturer

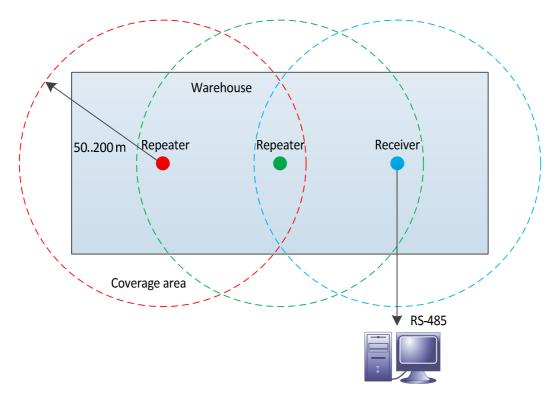
Nokeval Oy Yrittäjäkatu 12 FI-37100 Nokia Finland

Tel +358 3 3424800 (Mo-Fr 8:30-16:00 EET) WWW <u>http://www.nokeval.com/</u> email <u>sales@nokeval.com</u>, <u>support@nokeval.com</u>

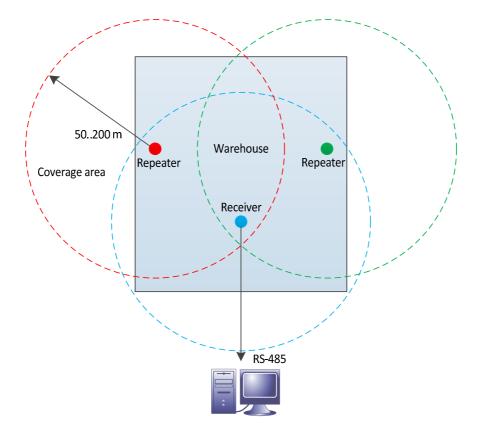

Installing

Mounting

The best installation environment for a radio receiver is above a big grounded horizontal metal surface surrounded by as few as possible vertical metal surfaces. Antenna is to be installed perpendicular to the metal surface. The best range for the transmitter is achieved when there is a line-of-sight from the receiver to the transmitter. Walls and objects between the transmitters attenuate the signal and thereby shorten the range. On the other hand, metal surfaces cause reflections which might lengthen the range.


Placing the repeaters

The repeater must be placed in the coverage area of at least one receiver. For example, in the picture below the whole warehouse is covered using two repeaters that are placed near both ends of the warehouse. In this way the receiver that is placed in the center of the warehouse can receive transmissions anywhere from the warehouse.


Using two repeaters

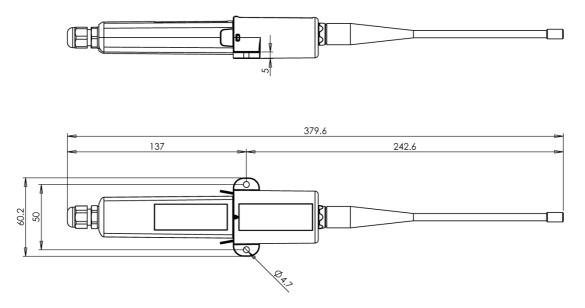
The picture below shows how two repeaters can be daisy chained.

The downside of daisy chaining is that now both repeaters relay also the data that they receive from the other repeater. This increases radio traffic and therefore decreases the maximum allowed number of radio transmitters in a coverage area. See the transmitter's manual or example table on page 6 how the use of repeaters affects the maximum number of transmitters.

Both repeaters can be placed in the coverage area of one receiver like in the example picture below.

The maximum number of transmitters

The maximum number of radio transmitters in a coverage area is limited by radio standards. The use of repeaters reduces the maximum number of transmitters because repeaters use the same frequency channel as transmitters. The following example table shows the allowed maximum number of Nokeval radio transmitters in a coverage area.


Transmission	Receiver		Receiver and 1 repeater	Receiver and 1 repeater		
Interval (s)	Maxin	Maximum number of transmitters				
5	22		11	7		
10	43		22	14		
20	87		43*	29		
30	130		65	43		
40	174		87	58		
50	217		109	72		
60	261		130	87		
70	304		152	101		
80	348		174	116		
90	391		196	130		
120	522		261	174		
240	1043		522	348		

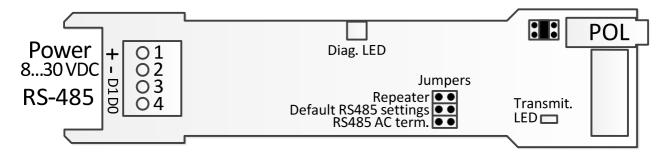
For example, if you have transmission interval of 20 seconds and one repeater, the maximum number of transmitters is 43*.

Note: ID filter can be used to reduce the radio traffic caused by the repeaters. Using ID filter, only the desired transmitter data packets is repeated (see the section "Firmware settings" sections Repeater/ID filter and Channels/Repeater).

Enclosure

FT20 consists of a radio transceiver module (FT20-RTC433) and a processor/serial module (FT20-RS485). Before use, please make sure that the modules are pushed together all the way so that the locking latches snap into position.

Opening the case


Modules can be detached from each other by pressing the locking latches on the sides of the enclosure and at the same time pulling the modules apart.

For receiver operation the serial module must be opened for RS485 and power cables installation. Serial module can be opened by gently pushing a screwdriver into the slot that holds the cover plate.

When the cover plate is removed, the circuit board can be pulled out of the enclosure.

Connections

FT20 serial module has a 4-pin terminal block for power supply and RS-485 connection. Serial module features also a round 3.5 mm POL programming connector jack found on many other Nokeval products as well. FT20 radio module contains BNC type antenna connector.

Power supply

The supply voltage range is 8...30 VDC and is connected to terminals 1 (+) and 2 (-). Power demand is 50 mA. FT20 is protected against wrong polarity of the supply voltage.

RS-485 serial bus

RS-485 is used when the device operates as a receiver. RS-485 interface can easily be added to a computer by using Nokeval DCS770 or DC771B USB - RS-485 converter or RCS770 USB/RS-232-RS-485 converter. If you use DC771B converter, no external power supply needed (DC771B's power supply should be set to 10V). RS-485 bus is connected to terminals 3 (D1) and 4 (D0). The supply voltage's negative terminal 2 (-) can also use as ground for RS-485.

The RS-485 bus consists of a bidirectional half-duplex twisted data pair and a common wire. The cable should be shielded, the shield earthed at one point. The nominal impedance should be approx. 100-120 Ω .

The length of an RS-485 bus can be up to 1 km and it can be connected to 32 devices, more can be connected via bus repeaters. If the bus is long (say more than 100 m), it is recommended to terminate the first and last device on the bus (set the "RS485 AC term" jumper to "on" position).

The polarity of the data pair is important. Modbus specifications call the positive idling line D1, but it is also commonly known as +, B, and A. Correspondingly the negative idling line is -, A, or B.

The bus needs one device that gives a small voltage between the data wires when no device is transmitting on the bus. This is called biasing or fail-safing. The master device is usually the natural choice for biasing.

POL connector

The POL connector is convenient for configuring when the device operates as a repeater. This connector can be used when the modules are disconnected from each other. Note that when the POL plug is connected the RS-485 bus is disabled.

Two types of programming cables are available:

- POL-RS232 for the RS-232 port of the computer.
- DCS772 for the USB port of the computer (recommended).

Antenna

Antenna is connected to the transceiver modules's BNC connector. Antenna is first pushed into the BNC connector by aligning it with two guide posts after which it is turned 90 degrees clockwise. Antenna can be removed by turning it counterclockwise after which the antenna can be pulled off.

Jumpers

FT20 has three jumpers in the serial module: "RS485 AC term" RS-485 termination jumper, default serial settings jumper and jumper which turns repeater on or off (if enabled in firmware settings).

If the device is the last device on the RS485 bus and the bus is long (say more than 100 m), it is recommended to set the "RS485 AC term" jumper to "on" position. When this jumper is set, AC termination is used which means that 1 nF capacitor and 110 ohm resistor are connected in series between the bus wires.

Maintenance

Cleaning

The plastic parts can be cleaned with a soft cloth and soap water. The cloth must be damp but not wet. Cleaning with isopropyl alcohol is also allowed.

Firmware settings

Repeater mode

User does not normally need to setup the device. By default, the device type FT20-RTC433-REPEATER is setup as repeater (repeater jumper is on) and it repeats all the received data packets. In some special cases, for example, when there is lot of transmitters, ID filtering may be needed.

Receiver mode

If you use PromoLog data acquisition software, then there is generally no need to configure the device. Just check that the repeater jumper is off because the repeater mode is not needed and thus prevent the extra radio traffic.

Mekuwin

MekuWin can be used to change settings on various Nokeval products. It has a unique feature: it loads the structure and the contents of the configuration menu from the target device, so the same MekuWin version can be used with past and forthcoming products. There is no need to update this software every time a new product or product version is released. You can download Mekuwin from Nokevals web site for free. Mekuwin has its own instruction manual.

It is also possible to change the configuration settings remotely by writing to the appropriate Modbus Holding registers.

With a POL programming cable

The communications parameters for POL are always:

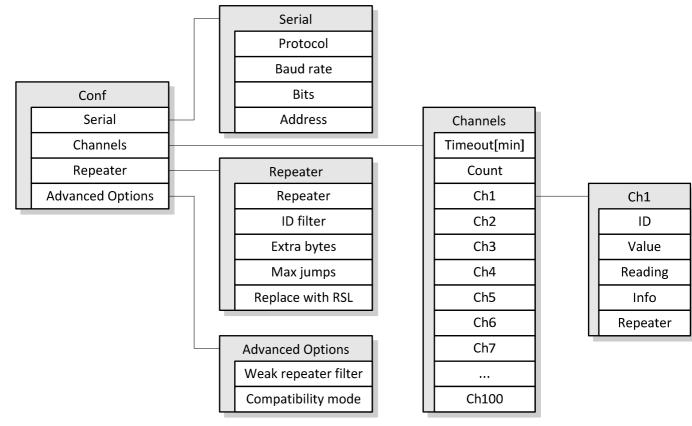
Protocol	SCL
Baud	9600
Parity	8N1
Address	0

Over the RS-485 serial bus

The Mekuwin communications parameters must match the selections made in the device (Serial menu).

Resetting RS-485 serial communication settings

In case RS-485 serial settings are for some reason not known, they can be temporarily set to defaults by the "default RS485 settings" jumper (shown in the figure on page 7) when the device is powered up.


Default communication parameter settings:

Protocol	SCL
Baud	9600
Parity	8N1
Address	0

Configuration settings

The configuration settings are arranged as a hierarchical tree: The Conf menu has submenus, and these contain settings and possibly more submenus, etc.

Menu of the FT20:

Serial submenu

Serial communication settings.

Protocol

- SCL: Nokeval SCL protocol. Default.
- Modbus RTU: Modbus RTU protocol

Baud rate

Baud rate selection: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400. Default 9600.

Bits

Bit selection: 8N1, 8N2, 8E1, 8O1.

Note! SCL protocol uses always 8N1 (this item does not appear when the protocol is SCL). Modbus RTU uses commonly 8E1.

Address

Serial communications address selection. Since several devices can be attached to a bus, each device needs to be configured to a different Address. Valid SCL-addresses are 0...123. Valid Modbus RTU-addresses are 1...247. Default 0.

Serial		
Protocol		
Baud rate		
Bits		
Address		

Channels submenu

Up to 100 channels can be set up in the radio receiver. These channels can be set up to contain any data received from the radio transmitters. The values of these channels can then be queried over the serial interface. This menu contains settings for configuring these channels.

Timeout

The number of how many minutes have to pass since last reception until it is determined that the device is not transmitting anymore and its value is set to NaN (Not a Number). For example if Timeout = 10 min then channel value is set to NaN when more than 10 minutes but less than 11 minutes have passed since last reception.

Count

Sets how many channels are used (0...100).

Ch1 ... Ch100

100 MTR series transmitters (for example MTR260 and FT10) can be defined to act as certain channels. For example, when the

device receives "MEA CH 1?" command it sends latest received data from the transmitter that has been assigned to channel one. To assign a device to channel one, set the transmitter's ID to Ch1 ID value. Other channels can be assigned in the same way.

ID

Identification (ID) number of the transmitter (1...65535).

Value

Defines where the contents (reading) of the channel comes from:

- Input: Measurement result from the wireless transmitter.
- TcB, TcC, TcD, TcE, TcG, TcJ, TcK, TcL, TcN, TcR, TcS or, TcT: Used thermocouple linearization if transmitter in question can measure temperature with thermocouples but cannot perform the necessary thermocouple linearization by itself.
- Batt: Battery voltage of the transmitter.
- CJ: Cold junction temperature of the transmitter.
- **RSL**: Received signal level.
- Interval: Tells how many seconds between successive receptions from the transmitter.
- Age: Tells how many seconds have passed since last reception from the transmitter.
- Jumps: The number of repeaters the data from the transmitter has passed through.

Reading

Channel reading.

Info

Shows information on the corresponding transmitter. Signal level, battery voltage, seconds elapsed from the last reception, transmitter type and number of repetitions.

Repeater

If "ID filter" is checked in Repeater submenu, only those IDs will be repeated that have this setting on.

 Ch1
ID
Value
Reading
Info
Repeater

Channels

Timeout[min]

Count

Ch1

...

Ch100

Repeater submenu

Repeater

- Off: Repeater function is off.
- On: Repeater function is on.
- Jumper: Jumper controls the repeater function. Default setting.

ID filter

If checked, only those IDs that are checked in Channels/ChX/Repeater submenu will be repeated. Default unchecked.

Extra bytes

If checked, the device adds additional information to the repeated data packets: Number of hops and the received signal strength. Group of repeaters can deliver received signal level of the weakest link. Default unchecked.

Max jumps

If the "Extra bytes" setting is checked in all repeaters in the system, this setting can limit the number of repeats (jumps) and thus prevent an endless repeating cycle of data packets. Default value 15.

Replace with RSL

This setting is reserved for testing purposes only. When checked, the original measurement value of the repeated data is replaced with the received signal level. Default unchecked.

Advanced Options submenu

Weak repeater filter

When checked, the repeater function will not repeat already repeated data packets that have a received signal level weaker than already received. Default checked.

Compatibility mode

When checked, the receiver uses an alternate signal processing algorithm. Try different setting if you have problems with reception in low signal level conditions. Default checked.

Monitor menu

Monitor menu contains some information that can be useful during installation and which may facilitate monitoring the system's operating condition.

Mon				
Uptime[h]				
LastID				
LastType				
Last RSL[dBm]				
RSL[dBm]				
Switches				

Repeater			
Repeater			
ID filter			
Extra bytes			
Max jumps			
Replace with RSL			

Advanced Options Weak repeater filter Compatibility mode

Operation

FT20 has one diagnostic LED that shines through the case of the device. This LED blinks slowly when the unit is operational but not receiving any radio data packets at the moment, and blinks rapidly when radio data packets are being received.

Receiver operation

Promolog data acquisition software

PromoLog is a modular data acquisition software allowing you to design customized data collection and monitoring applications matching your needs.

Applications are created by dragging suitable modules from library onto the screen. Both wireless and wired transmitters are supported practically without channel limits. You can also place photos or drawings on the background.

Serial commands

In case PromoLog data acquisition software is not used for reading data from the device, then following protocols can be used to read data from the device:

- Nokeval SCL protocol (page 14).
 - \circ $\;$ Reading with SCL commands.
 - Reading with Nopsa commands over SCL protocol (page 18).
- Modbus RTU protocol (page 15).
 - o Reading Modbus registers.
 - Reading with Nopsa commands over Modbus protocol (page 18).

SCL protocol

A full specification of the Nokeval SCL protocol can be downloaded from <u>Nokeval WWW site</u>. In short, the command frame consists of an address byte (bus address+128), a human-readable command, an ETX character (ASCII 3) and an XOR checksum of all bytes excluding the address byte. A normal response consists of an ACK (ASCII 6), a human-readable response, an ETX and an XOR checksum of all the bytes including the ACK. An error response is similar, but the ACK is replaced by a NAK (ASCII 21).

Nokeval SCL always uses 8N1 parity.

SCL Commands

This device supports the following SCL commands:

TYPE?

Returns the model name and software version of the device.

SN ?

Returns the device's serial number, for example "A123456".

MEA CH <ch>?

Returns the last received value from the channel <ch>. The response may contain digits 0-9, minus sign, and a decimal point. The scientific representation 1.00E-3 is not used. If the channels result is NaN (Not A Number), device returns -----.

MEA SCAN <first> <last>

Returns the last received values of channels <first> to <last> separated with a space. E.g. MEA SCAN 1 3 will return the values of channels 1, 2, and 3. An example response: 25.6 29.1 0. If the channels result is NaN (Not A Number), device returns -----

DBG 1 ?

Returns the oldest unread data packet from the ring buffer.

DBR 1 <xx> ?

Returns a data packet from the ring buffer at location <xx>.

DBX

Clears the ring buffer (marks all data packets as read).

DBS 1 ?

Returns the size of the ring buffer.

N <hexadecimal data>

Encapsulating a Nopsa command in SCL. The Nopsa command is converted to hexadecimal characters without spaces. E.g. querying the serial number: N 0102. The device responds with hexadecimal characters carrying a Nopsa response. See section "Nopsa commands".

MN <hexadecimal data>

A legacy command for encapsulating Meku configuration commands in SCL protocol. Using Nopsa is recommended.

Modbus protocol

Supported Modbus RTU commands:

- 3 Read Holding Registers: Read settings.
- 4 Read Input Registers: Read result values.
- 6 Write Single Register: Change settings.
- 16 Write Multiple registers: Change multiple settings at once.
- 17 Report Slave ID: Device type information.
- 109 Meku: This is used by Mekuwin configuration software.
- 110 Nopsa: This is used to transport Nopsa protocol on Modbus.

Command 17 returns 0x11 <byte count> 0x00 0xFF, followed by for example "FT20 V1.0 A123456"

Maximum Modbus packet length is 240 bytes. This affects the maximum possible register count that can be accessed simultaneously with commands 3, 4 and 16.

When settings are changed, the device will save the settings instantly into the configuration EEPROM memory. If serial settings are changed, new settings will take effect only after cycling the device power, it works this way so that all serial settings can be done at once without breaking the serial connection.

Data types:

- BOOL: On/off value. 0=off, 1=on, in lower (right hand side) byte.
- BYTE: 8-bit value. Only lower (right hand side) byte used.
- WORD: 16-bit value.
- ENUM: List of alternatives.
- FLOAT: 32-bit float IEEE 754. Least significant word first, inside word most significant byte first.
- STRINGZ: Zero terminated string. In one Modbus register data is presented as most significant byte first.

Input registers

01	Ch1\Reading	FLOAT (LSW, MSB)	Signed	Table	e E1
23	Ch2\Reading	FLOAT (LSW, MSB)	Signed	Value	Туре
				0	MTR260
198199	Ch100\Reading	FLOAT (LSW, MSB)	Signed	1	MTR262
				2	MTR264
200201	Ch1\Reading	FLOAT (MSW, MSB)	Signed	3	MTR265
202203	Ch2\Reading	FLOAT (MSW, MSB)	Signed	4	MTR165
				5	FTR860
398399	Ch100\Reading	FLOAT (MSW, MSB)	Signed	6	CSR260
				7	Unknown
400401	Ch1\Reading	FLOAT (LSW, LSB)	Signed		
402403	Ch2\Reading	FLOAT (LSW, LSB)	Signed		
598599	Ch100\Reading	FLOAT (LSW, LSB)	Signed	Table	e E2
				Bits	Bits
600601	Ch1\Reading	FLOAT (MSW, LSB)	Signed	06	Age counter [r
602603	Ch2\Reading	FLOAT (MSW, LSB)	Signed	7	Data changed
798799	Ch100\Reading	FLOAT (MSW, LSB)	Signed		
1000	Ch1\Reading	WORD	Signed		
1001	Ch2\Reading	WORD	Signed		
 1099	 Ch100\Reading	WORD	Signed		
1055	CHIOO(Reading	WORD	Jigneu		
2000	Ch1\ID	WORD	Unsigned		
2001	Ch1\Type	ENUM	See Table E1		
2002	Ch1\Battery	WORD	Unsigned		
2003	Ch1\Signal	WORD	Unsigned		
2004	Ch1\Flags	WORD	See Table E2		

[min]

Measured values are available in 4 different word/byte order formats in registers below 1000. All floats are 32-bit floating point numbers according to IEEE 754.

- In registers 0...63: Least significant word first, inside word most significant byte first.
- In registers 200...263: Most significant word first, inside word most significant byte first.
- In registers 400...463: Least significant word first, inside word least significant byte first.
- In registers 600...663: Most significant word first, inside word least significant byte first.
- In registers 1000...1031 results of channels are presented using fixed point notation with 1 decimal. In example integer 150 means 15.0.

Note! In case the reading is too old (older than the timeout parameter configured in the menu specifies) or there is no reading for a channel then float value is Quiet NaN (0x7FC00000) and word value is 0x7FFF.

Holding registers

Address	Name	Туре	Values
2000	Conf\Serial\Protocol	ENUM	See table E3
2001	Conf\Serial\Baud rate	ENUM	See table E4
2002	Conf\Serial\Bits	ENUM	See table E5
2003	Conf\Serial\Address	BYTE	Unsigned 0247
2004	Conf\Channels\Timeout[min]	BYTE	Unsigned 1255
2005	Conf\Channels\Count	BYTE	Unsigned 0100
2006	Conf\Channels\Ch1\ID	WORD	Unsigned
2007	Conf\Channels\Ch1\Value	ENUM	See table E6
20082009	Conf\Channels\Ch1\Reading	FLOAT	Signed
20102025	Conf\Channels\Ch1\Info	STRINGZ	Len=32
2026	Conf\Channels\Ch1\Repeater	BOOL	
2027	Conf\Channels\Ch2\ID	WORD	Unsigned
2028	Conf\Channels\Ch2\Value	ENUM	See table E6
20292030	Conf\Channels\Ch2\Reading	FLOAT	Signed
20312046	Conf\Channels\Ch2\Info	STRINGZ	Len=32
2047	Conf\Channels\Ch2\Repeater	BOOL	
4106	Conf\Repeater\Repeater	ENUM	See table E7
4107	Conf\Repeater\ID filter	BOOL	
4108	Conf\Repeater\Extra bytes	BOOL	
4109	Conf\Repeater\Max jumps	BYTE	Unsigned 115
4110	Conf\Repeater\Replace with RSL	BOOL	
4111	Conf\Advanced Options\Weak repeater filter	BOOL	
4112	Conf\Advanced Options\Compatibility mode	BOOL	

Enum values

Table E3		
Value	Protocol	
0	SCL	
1	ModbusRTU	

Table E5		
Value	Bits	
0	8N1	
1	8N2	
2	8E1	
3	801	

_

Table E4		
Value	Baud rate	
0	300	
1	600	
2	1200	
3	2400	
4	4800	
5	9600	
6	19200	
7	38400	
8	57600	
9	115200	
10	230400	

3	801	
Table	E7	
Value	Repeater	
0	Off	
1	On	
2	Jumper	

value	value
0	Input
1	ТсВ
2	TcC
2 3	TcD
4	TcE
5	TcG
6	TcJ
7	TcK
8	TcL
9	TcN
10	TcR
11	TcS
12	TcT
13	Batt
14	CJ
15	RSL
16	Interval
17	Age
18	Jumps

Table E6ValueValue

Nopsa commands

Nopsa is a command language which enables measurement data and configuration data transfer. Nopsa can be used to transfer data between devices or from host to device. Nopsa needs some transfer layer protocol, which takes care of addresses, transfer error management and packet length. This device supports Nopsa commands over either Nokeval SCL or Modbus RTU protocols.

Supported Nopsa commands

- 1/0 (Type) Read device type
- 1/1 (Version) Read device version
- 1/2 (Serial number) Read serial number of the device
- 1/3 (Description) Read short description of the device
- 1/4 (Command set) Read command set number for the device
- 1/5 (Serial buffer size) Read serial buffer size
- 1/7 (Radio ID) Read radio ID
- 1/16 (Reset) Reset device
- 1/32 (Meku) Pass Meku configuration commands to device
- 2/0 (Out value request) Read channel reading
- 2/1 (Out resource request) Read channel metadata (name, data type)
- 4/0 (Buffer info) Read buffer size and current write position
- 4/1 (Find oldest from buffer) Move read position to oldest entry in buffer
- 4/2 (Find newest from buffer) Move read position to newest entry in buffer
- 4/3 (Read buffer with index) Read specific data entry from buffer
- 4/4 (Read next from buffer) Read data entry from buffer and move read position to next
- 4/5 (Reread last) Returns last read operation contents
- 7/10 (Carrier) Turn carrier on or off.
- 7/11 (Test packet) Send RF test packet

Transport protocol SCL

When Nopsa packets are transported on SCL data is converted to hexadecimal notation (0-9 and A-F). One Nopsa byte will become 2 bytes. No spaces between characters. Packet starts with SCL command N and a space.

ID 'N' ' ' Nopsa-packet in hexadecimal ETX BCC

Response is transferred also same way in hexadecimal, but N command is not appended.

ACK Nopsa-response in hexadecimal ETX BCC

Transport protocol Modbus RTU

Command function 110 (0x6E) is reserved for Nopsa commands in Modbus free command area. After function code there is one byte which informs Nopsa packet length.

ID 0x6E Length Nopsa-packet CRC

Response is in same format.

0x6E Length Nopsa-packet CRC

Nopsa response

Each response contains first status byte.

Bit	Description
.7	Internal error. Device has detected some internal malfunction. In example flash memory don't
	respond. More detailed error information need to be request by Meku Diag.
.6	External error. Device has detected some external error. More detailed error information need to
	be requested by Meku Diag.
.20	Command progress:
	* 0 = OK
	* 1 = Command is not supported
	* 2 = Parameter error
	* 3 = Device is unable to process the command at the moment (busy)
	* 4 = Command is legal, but some error caused it to fail

If response is not OK, then the response data is not response for the command. Command specific data begins immediately after status byte.

Nopsa command group 1 – Basic commands

	Command	Response
1/0 (Type)	0x01 0x00	status string
string: Device type as strin	ng -> FT20	
	Command	Response
1/1 (Version)	0x01 0x01	status string
string: Device version as st	tring -> V1.0	
	Command	Response
1/2 (Serial number)	0x01 0x02	status string
string: Device serial numb	er as string -> A123456	
	Command	Response
1/3 (Description)	0x01 0x03	status string
string: Device description	as string -> "Wireless data rec	eiver and repeater"
	Command	Response
1/4 (Command set)	0x01 0x04	status set*4 *(*4 means 4 bytes)
Set: Informs which Nopsa	command set device impleme	nts. Command sets are described in another
document.		

	Command	Response	
1/5 (Serial buffer size)	0x01 0x05	status size	
size: Informs serial buffer size of the device			

	Command	Response
1/16 (Reset)	0x01 0x10	No response
Device resets immediately after command and don't response for it.		

	Command	Response
1/32 (Meku)	0x01 0x20 Meku command	status Meku response
Command used by Mekuwin configuration software		

	Command	Response
1/7 (Radio ID)	0x01 0x07	status id*2
id: Device radio ID.		

Nopsa command group 2 – Data commands

	Command	Response
2/0 (value request)	0x02 0x00 number	status type data*4
number: Channel number 03	1, type: 4 (FLOAT), data: float IEEE	2754
Command Response		
	Command	Response
2/1 (resource request)	Command 0x02 0x01 number	Response status types flags name*n

Nopsa command group 4 – Logger commands

Real-time data buffer commands

Real-time data buffer comm		
	Command	Response
4/0 (Buffer info)	0x04 0x00	status size*2 write position*2
size: Ring buffer size (96), write	e position: position next to be wr	itten
	Command	Response
4/1 (Find oldest)	0x04 0x01	status read position*2 lap counter
read position: position where i	s oldest data,	
lap counter: how many times r	ing buffer has rolled over (0255	i)
	Command	Response
4/2 (Find newest)	0x04 0x02	status read position*2 lap counter
read position: position where i	s newest data,	
lap counter: how many times r	ing buffer has rolled over (0255	5)
	Command	Response
4/3 (Read buffer with index)	0x04 0x03 index*2	status index*2 lap counter
		timestamp*4 id*2 type data*n
index: buffer read position		· · · · ·
-	ing buffer has rolled over (0255	5)
timestamp: 4-byte timestamp		
id: data origin		
type: 32 (STRUCT)		
	Command	Response

Command	Response
0x04 0x04	As in command 4/3
nly status byte	
Command	Response
	nly status byte

	Command	Response
4/5 (Reread last)	0x04 0x05	As in command 4/3
Return data which was read last. This has its uses when serial communication error happens.		

Data structure

Data structure in buffer is following

Table for possible device

			types
Data type STRUCT			Туре
Struct type	0	Raw radio data packet	MTR2
Device type	1 byte		MTR2
Signal strength	1 byte	Subtract 127 to get result in dBm.	MTR2
Bytes + battery	1 byte	3 msb data bytes, 5 lsb battery	MTR2
		voltage. Divide battery by 10 to	MTR1
		get result in volts.	FTR86
Data bytes	0-7 bytes	Information is dependent on	CSR26
		device type.	CSR26
		·	00000

Value
0
2
4
5
6
7
8
9
10
11
12

Specifications

Radio

Antenna Connector	50Ω BNC female connector
Antenna	Whip antenna
Max input power	+10 dBm
Frequency band	license free 433.92MHz
	ERC/REC 70-03 sub channel f
	(sub channel e in older
	specs)
Ring buffer memory	96 latest transmissions

RS-485 serial connection

Connector	4-pin terminal block
	combined with power
	supply, terminal 3 D1,
	terminal 4 D0.
	Maximum cable length is
	1000 m
Protocol	Nokeval SCL, Modbus RTU,
	Nopsa
Baud rates	300, 600, 1200, 2400, 4800,
	9600, 19200, 38400, 57600,
	115200, 230400 bits/s
Modbus parity	8N1, 8N2, 8E1, 8O1

Power supply

Connector

Voltage

4-pin terminal block combined with RS-485, terminal 1 +, terminal 2 -. 8...30 VDC 50 mA

LEDs

Internal LED	
Glows through the case	

Transmission activity. Blinks slowly: Ready for operation Blinks rapidly: Reception activity

RS-485 or POL

Nokeval SCL-Meku 1

Mekuwin for Windows

Settings

Connection Protocol Software

Environmental

Operating temperature
Storage temperature
Humidity
Protection class

-30...+60 °C -40...+70 °C max 90 %RH non-condensing IP66

Dimensions

Length Width Height Weight 379.6 mm, inc. antenna 60.2 mm 32.5 mm 123 g

Regulations

EMC immunity **EMC** emissions

R&TTE directive EN 300 220 class 3 EN 300 489 EN 300 339

EN 61326 EN 61326 class B

Current

External Power supply for FT20-RTC433-REPEATER

Input voltage Input frequency Max. input current Insulation class AC power plug Enclosure

100...250 VAC 50...60 Hz 150 mA Class II Europlug The power supply is only designed for indoor use and should not come into contact with water or dust.